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Abstract. We generated/extended low concentration series for the second moment of distances
between cluster pointsA2 in site and bond percolation on the square lattice and used them to
calculate series for the correlation lengthξ . We analysed these and other series for their critical
amplitudes, and compared them with results from Monte Carlo simulations of triangular site, square
site, and square bond percolation. The values obtained from the different models for the amplitude
combinationB2ξ2

0/02 (ξ0, 02, andB are the amplitudes ofξ , the second moment of the cluster
size distributionM2, and the strength of the infinite clusterP , respectively), are all within the range
2.23± 0.10, confirming universality.

1. Introduction

Percolation models have been studied for decades and have been used to describe geometric
phase transitions in a large variety of systems [1–3]. Scaling theory, originally developed for
thermodynamic phase transitions, has been successfully formulated for percolation. It predicts
the universality of the critical exponents and certain scaling relations among them. For the
critical amplitudes, which are not universal by themselves, it further predicts the universality
of certain ratios and other multiplicative combinations [4].

In particular in two dimensions much knowledge has accumulated: the critical exponents
are known exactly, and the non-universal critical thresholdpc is known exactly for some lattices
and very accurately for many others. Amplitudes were also estimated for some quantities in
some models, but here the data are not complete.

In this paper we present new estimates for the critical amplitudeξ0 of the connectivity
length ξ for bond percolation (with site and bond counting), with the aim to calculate the
combinationξd0B

2/02, which is predicted to be universal. Here,B and02 are the amplitudes
of the strength of the infinite clusterP and the second moment of the cluster size distribution
M2, respectively, andd is the dimension restricted to 2 throughout this paper. We further
obtain all these amplitudes for bond and site percolation, using series expansions and Monte
Carlo simulations, and compare our values with those from previous publications. This
comparison turns out to be non-trivial and shows that one cannot simply combine the numerical
values from different papers, since different researchers use slightly different definitions and
normalizations.
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Section 2 gives the precise definitions of the quantities we calculate and explains how their
power series were generated. In section 3 we carefully introduce the three models under study
and address the problem of choosing the proper unit lengths and normalizations for cluster
counting. Section 4 is devoted to the series analysis, while section 5 gives details about our
Monte Carlo simulations. The value of universal quantities can be useful to calculate additional
non-universalquantities in models, where only some of them are known. We further discuss
this and summarize our results in section 6.

2. Generation of the series

The generation of the low concentration series for the moments of the cluster size distribution
Mk is based on the equation

Mk(p) =
∞∑
b=0

∑
0∈0b

pb(1− p)t(0)s(0)k (1)

which is given here for the case of bond percolation with site counting. Here0b denotes the
set of all clusters withb bonds,s(0) the number of sites in cluster0, t (0) its number of
perimeter bonds, andp is the bond concentration, meaning the probability that a certain bond
is occupied. In practice one cannot perform the summation forb up to infinity, but has to
restrict oneself tob 6 N with a finiteN . Often it is convenient to use the variableq = 1− p,
which becomes the expansion parameter in high concentration series. The generalization to
site percolation, or bond percolation with bond counting, is obvious.

An expansion of the quantities to orderN is calculated by summing up the contributions
from all clusters with up toN bonds. The corresponding equation for thekth moment of
distances is

Ak(p) =
∞∑
b=0

∑
0∈0b

pb(1− p)t(0)
s(0)∑
i,j=1

rkij (2)

wheresk is replaced by
∑s(0)

i,j=1 r
k
ij , andrij denotes the geometrical distance between sitesi

andj of the cluster0†.
A computer program was used to enumerate all different cluster configurations recursively,

by an algorithm similar to those described in [5–7], for clusters with up toN bonds. Their
contribution to all the relevant orders of the series was then calculated, and added to the
coefficients.

In the site case this was the only method used, and the correctness of the program was
checked by re-generating the series of the moments given in [8] and also the series for the
calliper diameter of branched polymers [9], which is a more rigorous check, since it includes
the geometrical shape of every cluster.

In the bond-percolation cases, a different program calculated the same series from shape
data files (of up to 14 bonds) [10], where each entry contains the complete geometrical
information about a cluster shape together with the number of distinct configurations
(reflections, rotations) in which it appears. This approach reduces the amount of computer time
needed if many series are generated, but is not really a different technique since the shape lists
were obtained using the same algorithm as mentioned above. Correctness of the algorithms
was checked completely to order 11 by comparison with series and data files by Wanet al [11],
and to a lesser extent to all orders used, by the regeneration of series in [12]. Based on these

† Note that in equation (47b) of Stauffer and Aharony [1] theR2
s was meant to be averaged over all cluster

configurations with the proper weights as done here in (2); this was clarified by R M Ziff (1998 private communication).
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Table 1. Series for bond percolation with bond counting. (P(q) andM2(p) after [8].)

Coefficientsan in . . . =∑n anq
n or . . . =∑n anp

n, respectively
n P (q) M2(p) A2(p) ξ2(p)

0 1 0 0 0
1 −1 1 0 8
2 0 6 16 32
3 0 18 160 96
4 0 48 864 320
5 0 126 3 712 632
6 −1 300 13 648 2 704
7 1 762 46 592 2 136
8 −8 1 668 145 776 23 296
9 14 4 216 443 936 −11 384

10 −54 8 668 1 265 040 203 712
11 114 21 988 3 591 584 −278 044
12 −345 43 058 9 622 440 1 655 152
13 787 110 832 26 054 640−2 872 568
14 −2 203 202 432 66 675 360 11 503 792
15 5 483 561 020 174 991 936
16 −15 283 875 382
17 39 891 2881 286
18 −108 216 3501 056
19 280 506
20 −739 374
21 1 919 390
22 −5 084 644
23 13 447 658
24 −35 886 008
25 95 206 424
26 −253 035 652
27 671 219 234
28 −1 786 728 606
29 4 756 022 606
30 −12 671 128 640
31 33 729 167 216
32 −89 882 252 217
33 239 775 402 139
34 −640 561 757 069
35 1 711 651 978 489
36 −4 574 053 238 290
37 12 223 988 780 968
38 −32 689 762 102 187
39 87 483 151 484 487

checks, we strongly believe that the new series presented in this paper (tables 1–3), namely the
second moment of distancesA2 and the squared correlation lengthξ2 = A2/M2, are correct.

Other series we use in this paper are the long high concentrationM1 and the low
concentrationM2 series for site percolation and for bond percolation with bond counting,
published by Conway and Guttmann [8]. The momentsMk for the bond-percolation model
with site counting were previously studied with series in general dimension by Adleret al [12].
However, these papers do not deal with quantities that, likeAk andξ , depend on thegeometrical
shape of the clusters.
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Table 2. Low concentration series for bond percolation with site counting. (M2(p) after [12].)

Coefficientsan in . . . =∑n anp
n

n M2(p) A2(p) ξ2(p)

0 1 0 0
1 4 4 4
2 12 32 16
3 36 164 52
4 88 688 144
5 236 2 540 412
6 528 8 540 940
7 1 392 27 192 2 840
8 2 828 81 308 4 876
9 7 608 237 656 18 952

10 14 312 658 916 18 308
11 39 348 1 821 844 129 876
12 6 970 4 788 356 8 500
13 197 620 12 739 444 948 036
14 318 232 32 109 712 −877 136
15 1013 424 83 317 120 7794 256

We study the quantities near the critical threshold, where we are interested in the critical
amplitudes as defined by the following asymptotic expressions:

M2(p) ∼ 02(pc − p)−γ (3)

P(q) = p −M1(p) ∼ B(p − pc)β (4)

ξ ∼ ξ0(pc − p)−ν . (5)

With these definitions, the combinationξd0B
2/02 is expected to be universal [4]. Note

that in the literature there exists a large variety of different definitions and normalizations of
quantities relevant to percolation, in particular their amplitudes. For instance in [8] the authors
useP = 1−M1/p, and in the bond-counting case all their series include a factor of 2 compared
with ours. Such details obviously influence the numerical value obtained for an amplitude,
and one must stick to consistent definitions, and calculate conversions properly.

3. Details of the differences between the models

Figure 1 will help us to explain the differences between the models we address. It has three
parts labelled A, B and C, each of which shows a section of the square lattice. These parts
represent the bond-percolation model with site counting, the bond-percolation model with
bond counting, and the site-percolation model, respectively [13]. In each of the parts we have
a finite cluster (lattice animal), and at first sight these clusters look quite similar (T-shaped). For
each model however the ‘cluster’ is different, as we demonstrate by calculating its contribution
toM2.

Bond-percolation model with site counting or bond counting.Here all lattice sites are
occupied, and bonds, which are occupied with probabilityp, form the clusters.

The configuration shown has three bonds, four sites, and a bond perimeter of 10, hence
when counting sites its contribution toM2 is p3(1− p)1042. If we interpret this figure as
representing the shape rather than the configuration, it appears in four orientations, and thus
this contribution appears four times. More accurately phrased we count the configurations per
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Table 3. Series for site percolation with site counting. (P(q) andM2(p) after [8].)

Coefficientsan in . . . =∑n anq
n or . . . =∑n anp

n, respectively
n P (q) M2(p) A2(p) ξ2(p)

0 1 0 0 0
1 −1 1 0 4
2 0 4 4 16
3 0 12 32 36
4 −1 24 148 96
5 1 52 528 244
6 −4 108 1 652 432
7 −4 224 4 688 908
8 −15 412 12 364 2 392
9 −5 844 311 76 3 344

10 −158 1 528 75 264 8 168
11 234 3 152 176 808 14 084
12 −1 349 5 036 399 812 41 472
13 2 713 11 984 902 432 −540
14 −13 704 15 040 1 938 596 269 784
15 42 676 46 512 4 272 328−213 012
16 −172 825 34 788 8 741 148 1414 560
17 559 053 197 612 19 243 904−2449 812
18 −2 029 776 4 036 37 002 332
19 6 774 936 929 368
20 −23 900 386 −702 592
21 81 129 962 4 847 552
22 −282 099 620 −7 033 956
23 963 894 132 27 903 296
24 −3 331 512 669 −54 403 996
25 11 422 580 633 170 579 740
26 −39 350 336 472
27 134 939 821 080
28 −463 383 554 563
29 1586 767 676 943
30 −5434 335 886 108

B

1

C

1

A

1

Figure 1. Illustration of the different percolation models under study: (A) bond percolation with
site counting, (B) bond percolation with bond counting, (C) site percolation (site counting). The
double-sided arrow indicates the unit length.

total number ofsiteson the lattice (rather than per number of bonds) since we deal with site
counting. Due to the fact that all sites are occupied we need to take single sites into account
as zero-bond clusters, contributing(1− p)4.

In the case ofbond countingthe shown configuration contributesp3(1− p)1032. Now
we have to normalize by the total number ofbondson the lattice, hence this shape contributes
twice. The contribution of the single-site cluster evaluates to 0.
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Site-percolation model. Here lattice sites are occupied with probabilityp, and all the bonds
are occupied. The configuration shown contributesp4(1− p)842, because its site perimeter
is 8. Again the shape contributes four times.

For calculating the correlation length one needs to choose the unit length properly in
order to recover universality. Our general rule is to choose the unit length such that there is
one entity of the counted cluster size (site or bond) per unit area. In figure 1 these lengths
are indicated by a double pointer annotated with ‘1’. Whenever we calculate the distance
between sites, this rule naturally reproduces the lattice constant as the proper choice. In the
bond percolation problem with bond counting on the square lattice, the distance between the
centres of the nearest neighbour bonds has to be set to unity. Less obvious unit lengths apply
to other lattices, such as the triangular lattice.

Please note also, that with this choice of unit length our way to count cluster configurations
per total number of sites or bonds on the lattice, becomes in each of the cases identical to
normalization by lattice area. This is equivalent to the non-trivial statement: ‘a cluster of size
1 occupies an area 1 and contributes once!’

4. Analysis of the series

For each of the three models we analysed the three series ofP(q), M2(p) andξ2(p). The
critical exponents in two-dimensional percolation are known exactly (β = 5

36 ≈ 0.138 88,
γ = 43

18 ≈ 2.3888,ν = 4
3 ≈ 1.3333, see e.g. [1]), as well as the threshold in the bond case

(pc = 1
2). Although the critical threshold is not known exactly for site percolation, the estimate

by Ziff [14] of pc ≈ 0.592 7460± 0.000 0005 is so accurate compared with what could be
obtained from the series, that for our purposes it can be treated like an exactly known value.

Nevertheless, before actually addressing the problem of obtaining the critical amplitudes,
we analysed each of the series for its critical exponent and threshold. The results gave us a
feeling of how well the series behave, and if indeed they point to the correct values. Thus they
let us estimate to what degree we can trust the new values for the unknown amplitudes. Since
in series expansion one can never completely exclude the possibility of systematic errors, we
find that this is a valuable precaution. In general we found the known values to agree with those
shown by the series within error estimates from scattered ‘data points’ alone. More details are
given in the following section, where applicable.

For the analysis we used several established techniques, all based on the Padé
approximation. Analysis for the critical exponents was done with Dlog Padé analysis (when
calculating a Pad́e approximant to the logarithmic derivative of a series, its first-order real and
positive pole closest to the origin in the complex plane gives an estimate for the critical threshold
and the corresponding residue gives an estimate for the critical exponent, see e.g. [15]) and
in some cases using the techniques known as M1 and M2, which take into account possible
non-analytic corrections (see [16,17] or [12,18] and references therein).

To get estimates for the critical amplitudes we use our knowledge of the exponents and
thresholds, to transform the original series into series for quantities known to have a simple pole
at the critical point, with a residue, that allows us to calculate the value of the amplitude. These
transformed series are then approximated by Padé functions and we proceed as usual. If, e.g.,
we have a series forM2(p), which is expected to diverge as02(pc − p)−γ , we could calculate
a series forM2(p)

1/γ , which should behave like01/γ
2 /(pc − p). Alternatively we could

generate a series forM2(p)(pc − p)γ−1 and analyse for a singularity of the type02/(pc−p).
We actually used both approaches, the latter in particular forP(q), and include further details
in the following.
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Another alternative is to completely divide out the leading singular behaviour (e.g. study
P(q)(qc − q)−β or M2(p)

1/γ (pc − p)) and evaluate Padé approximants to the resulting
series at the true threshold. Such biased estimates usually give the most accurate values
if judged from the statistical fluctuations alone. On the other hand, corrections to the
leading singular behaviour now gain importance and will lead to systematic deviations from
the correct amplitudes, which may well be larger than the fluctuations. A systematic way
to account for corrections of the expected form, is to calculate inhomogeneous (biased)
differential approximants to the transformed series. In the present paper we do not follow this
computationally more complex approach. Instead we show the biased estimates for comparison
but base our conclusions on the unbiased estimates.

Analysis shows that all the original series point to an additional non-physical singularity
on the negative real axis, at aroundpn ≈ −0.3 to−0.4. In some cases this singularity attracts
more Pad́e approximants’ poles than the physical singularity. In any case, convergence of
approximants near the latter can be improved by applying an analytic transformation (Euler
transformation) to the series, before calculating the Padé approximants. Details of this
technique are described in [19]. Such a transformation, of the formz = pn p/(pn − p),
aims to map the non-physical singularity inp far away from the origin, and to reduce its
detrimental effect. In cases where we use such a transformation, we try varying its parameter
pn in reasonable ranges to make sure that the results we obtain are not sensitive to the precise
form.

4.1. Bond percolation with bond counting

In the case of bond percolation with bond counting we have series forP(q) up to orderq39

(40 terms), forM2(p) up top18 (18 terms without the leading zero) (both converted from [8]
to suit our definitions) and forξ2(p) up top14 (14 terms without the leading zero) as shown
in table 1.

In the following we describe in detail the different stages of analysis. As we proceed
towards the other models we will skip the details.

Series forP(q). We start with a Dlog Pad́e analysis of this 40-term series. As a first step
we calculate all poles (real and complex, and any order) of all the Padé approximants to the
logarithmic derivative of the series (d lnP(q)/dq), that are determined fully by the series. They
are plotted in the complex plane and the concentration of the real ones is analysed (figure 2(a)).
The ‘strongest’ pole (the point attracting the highest number of Padé poles) is indeed 0.5, but
a comparable one is observed at around−0.35. Application of an Euler transformation with
pn = −0.4, evaluating Pad́e approximants to the transformed series and re-transforming with
the inverse Euler transformation leaves 0.5 as the only noticeable real pole in the range [−1, 1].
This is documented by figure 2(b).

As the next step one can look at the plot of residues versus first-order real poles obtained
from Pad́e approximants to the d lnP(q)/dq-series. The data points in such plots usually do
not concentrate only around the true critical values, but instead are spread out along a line that
passes through the point defined by the true critical values (figure 3). Here it is understood
that, even when applying Euler transformations, we transform the estimates back using the
inverse transformation before preparing the plot. This is a convenient form of visualization
which avoids confusion. In the case of d lnP(q)/dq the line is well converged and passes
through the correct point almost within the scattering range of the points. If we do a biased
reading of theqc-estimates at the known exponent, the value deviates from the true one by at
mostqc/1000 (see the inset in figure 3). We take this as a rough estimate of how trustworthy
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Figure 2. Effect of an Euler transformation on the distribution of poles from all Padé approximants
in the complex plane, obtained from the series forP(q) in the bondpercolation (bond-counting)
model. (a) The distribution for the logarithmic derivative of the series and (b) the distribution that
results if an Euler transformation withpn = −0.4 is applied to that derivative. The poles are
transformed back to theq-plane before plotting.

the value obtained by the amplitude series is, if indeed its convergence is comparable.
To obtain the critical amplitudeB, we use our knowledge of the exactβ andqc = 1− pc

to calculate a series forP(q)(qc − q)−(1+β), which is supposed to behave asB/(qc − q) near
qc (B-amplitude series in the following). This series can again be conveniently approximated
with Pad́e functions, and the residue of simple real poles directly gives estimates for the critical
amplitudeB.

TheB-amplitude series also shows a negative pole around−0.38, but still convergence in
the pole–residue plot is very good (over 500 approximants in a range smaller thanqc±0.005).
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Figure 2. (Continued)

An Euler transformation withpn = −0.4 further improves convergence. Better than usual, the
highest concentration of pole–residue points is actually around the exactly knownqc (figure 4).
The plot suggestsB = 0.7771±0.0021, where the error margin is calculated from the spreading
of data points in the range where the density is high (indicated by the box in figure 4). This
includes the uncertainty in theqc value suggested by theP(q) series.

Another form of visualization is to plot the estimates forpc, the exponent, or the
amplitude versus the order of the corresponding Padé approximant (here we callL + M
the order of the approximant [L/M]). Since longer series correspond to higher orders
L + M, one expects the points in such plots to eventually converge to the correct value.
In our actual plots (e.g. figures 5(a) and (b)) we use the slightly modifiedx-coordinates
L + M + (L + M − |L − M|)/(L + M + 1). They distribute all approximants of a given
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Figure 3. Pole–residue plot from a Dlog Padé analysis of the series ofP(q) in the bond-percolation
(bond-counting) model. We used an Euler transformation withpn = −0.4. The main part gives
an overview over a large region including almost all data points. The histograms on the axes show
how these points are distributed. The dashed lines indicate the known values forqc andβ. The
inset is an enlarged view of the small region with the highest concentration of points as indicated
by the box. For comparison we calculated the average and standard deviationσn from the points
in the boxed area. This gives the estimatesqc = 0.499 35± 0.000 72 andβ = 0.1344± 0.0032
with n = 213.

orderL +M throughout the intervalL +M 6 x < L +M + 1, which causes less data points
to be plotted on top of each other and thus enhances the visualization. Another minor effect is
that approximants closer to the central ones [L/L], which often give more reliable estimates,
are shifted to the right.

In many cases we observe that indeed with increasing order the points converge to a certain
value. We then choose limits in they-direction big enough to enclose the area where many
points above some order concentrate, and from all points within this box calculate the average
〈y〉 and the standard deviationσN . These numerical values are summarized in tables 4–6
and are used to determine our final estimates. As we know from other models, e.g. directed
percolation [20], where much longer series have been calculated, even when the points seem to
have already settled down to a certain value, shifts at higher orders are still possible. However
such an analysis is the best we can do with the available data. It appears more systematic to
use the error estimates from such plots than from pole–residue plots, because the latterper se
treat all orders equally.

For qc andB the plots are shown in figures 5(a) and (b), respectively. Here we did not
use any Euler transformation, because it removed especially the poles from the highest-order
approximants. Including those estimates from order 28 and above that are not obviously
scattered far away from the point of convergence (as indicated by the boxes), we calculate
averages ofqc = 0.499 994± 0.000 015 andB = 0.777 71± 0.000 95 (see also table 4). The
fact that the known value ofqc = 1

2 lies within the error margins, gives some confidence in the
estimates forB obtained from the same series.
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Figure 4. Pole–residue plot from a Padé analysis of theB-amplitude series in the bond-percolation
(bond-counting) model. We used an Euler transformation withpn = −0.4. Averaging over the 453
points in the boxed area leads to estimates ofqc = 0.499 978±0.000 087 andB = 0.7771±0.0021,
where the value behind the ‘±’ is one standard deviationσn. See the caption of figure 3 for further
explanation.

Figure 6 shows the analogous plot from biased evaluation of Padé approximants to
P(q)(qc − q)−β . The box parameters can be read from the figure. The average suggests
B = 0.778 00± 0.000 60.

Series forM2(p). Again we start with a Dlog Padé analysis of the original 18-term series
(divided byp, to get a non-zero constant coefficient), and as before convergence of data points
improves by applying an Euler transformation withpn near−0.3. We already mentioned when
discussing theP(q) series, that the line of pole–residue data points does not pass through the
point of exactly known threshold and exponent. In the case of theM2(p)-series this also
happens, and the offset, although still small, is considerably bigger than for the other series.
As can be seen in figure 7(a), which shows only a tiny portion of the pole–residue plot, this
offset amounts to an error of approximatelypc/500.

To see if non-analytic corrections to the leading critical behaviour can explain this
deviation, we study the series using the methods M1 and M2, mentioned at the beginning
of this section. M2 does not provide any insight; it is not sensitive enough for this series in the
region of interest. M1 converges properly, but it does not resolve the offset frompc = 1

2 either.
Instead, it suggests the values ofpc = 0.4990± 0.0005,γ = 2.30± 0.02, with a value of the
leading non-analytic correction exponent11 = 1.160± 0.025, which indicates that the non-
analytic correction terms alone are not sufficient to explain the deviation. Each of the parts (b),
(c) and (d) of figure 7, shows the same area in the11–γ -space for a different trial value ofpc
(indicated in the figure). We include the near central Padé approximants of highest order in the
analysis, as detailed in the legend. In M1 one plots estimates of11 as a function of input values
of γ , which leads to one line of data points for each Padé approximant. In figure 7(c) of these
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Figure 5. Estimates forqc (a) andB (b) from theB-amplitude series in the bond-percolation
(bond-counting) model. No Euler transformation was applied. Each point in the plot corresponds
to a particular Pad́e approximant [L/M], whereL andM relate to the number on thex-axis as
given in the label. Final estimates were calculated from these kind of plots as explained in the body
of the text. The points that were included in the average are those within the boxed areas. The
resulting numbers are summarized in table 4.
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Table 4. Summary of the numerical values for the bond-percolation (bond-counting) model.
Whenever this paper includes a plot for a line of data, the corresponding figure is given as reference.
Otherwise we show four numbers, which are, in the given order, the lowest and highest order of
Pad́e approximants as well as lower and upper bound for estimates included in the average.n is
the number of individual estimates that were averaged.

Reference n qc 1qc β 1β

Figure 3a 213 0.499 35 0.000 72 0.134 4 0.003 2

Reference n qc 1qc β 1β

Figure 4a 453 0.499 978 0.000 087 0.777 1 0.002 1
Figure 5b 295 0.499 993 5 0.000 019 1 0.777 71 0.000 95
Figure 6c 360 0.778 00 0.000 60

Reference n pc 1pc 02 102

Figure 8a 68 0.499 55 0.000 61 0.073 2 0.001 9
Figure 9(a)b 43 0.499 86 0.000 65 0.074 5 0.003 4
12 18 0.073 0.076c 68 0.074 84 0.000 41

Reference n pc 1pc ξ0 1ξ0

Figure 9(b)b 60 0.499 33 0.000 70 0.522 3 0.005 4
8 14 0.5 0.56c 48 0.526 7 0.006 4

Reference n B2ξ2
0/02 1(B2ξ2

0/02)

Figure 10c 31 2.215 0.040

a From pole–residue plot.
b From plot of estimate from residue versus order of Padé approximant.
c From biased evaluation of Padé approximants.

Table 5. Summary of the numerical values for the bond-percolation (site counting) model. See
also caption of table 4.

Reference n pc 1pc γ 1γ

Figure 11a 48 0.499 7 0.001 4 2.385 0.040

Reference n pc 1pc 02 102

Figure 12(a)b 50 0.499 82 0.000 43 0.119 46 0.002 36
11 16 0.118 0.121c 50 0.119 63 0.000 35

Reference n pc 1pc ξ0 1ξ0

Figure 12(b)b 46 0.499 93 0.000 18 0.369 96 0.000 96
10 15 0.368 0.374c 39 0.370 32 0.000 60

a From pole–residue plot.
b From plot of estimate from residue versus order of Padé approximant.
c From biased evaluation of Padé approximants.

lines are distributed symmetrically around the point they all cross. How well they converge
can only be seen if one enlarges the convergence area (inset in (c)). In (b) and (d), with lower
and higher trial values ofpc, the convergence degrades and most lines shift to the right or
left side of the point of convergence (see [21] regarding graphical methods of series analysis).
Thus the estimates are read from figure 7(c) with error estimates set by (b) and (d).

It is known thatanalyticcorrections are observed as shifts in the critical threshold. This is
probably also the case here. In such cases M1 gives an effective mixture of both corrections [22].
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Table 6. Summary of the numerical values for the site-percolation model. See also caption of
table 4.

Reference n qc 1qc B 1B

Figure 13(a)a 97 0.407 246 4 0.000 007 2 0.910 09 0.000 44
24 31 0.91 0.911b 174 0.910 556 0.000 12

Reference n pc 1pc 02 102

Figure 13(b)a 43 0.592 70 0.000 29 0.097 22 0.001 50
18 25 0.094 0.102b 108 0.097 92 0.000 51

Reference n pc 1pc ξ0 1ξ0

14 17 0.51 0.53a 34 0.593 27 0.000 32 0.5202 0.0028
14 17 0.5 0.53b 27 0.5144 0.0041

Reference n B2ξ2
0/02 1(B2ξ2

0/02)

14 16 2 2.5b 20 2.231 0.086

a From plot of estimate from residue versus order of Padé approximant.
b From biased evaluation of Padé approximants.
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Figure 6. Estimates forB for the bond-percolation (bond-counting) model from biased evaluation
of Pad́e approximants toP(q)(qc − q)−β . The numbers resulting from averaging over the boxed
area are summarized in table 4. See the caption of figure 5 for further explanation.

One cause for analytic corrections is the Euler transformation and we found that the deviation
indeed depends on the value ofpn. Without Euler transformation, however, pole–residue
points decrease in number and spread over the range of the reported deviation. The systematic
deviation is covered by our error estimates.

To analyse for the critical amplitude02 we transform the original series to one
approximating(M2/p)

1/γ , using our knowledge of the exactγ . Figure 8 shows the excellent
convergence obtained in the pole–residue plot, and figure 9(a) shows02 estimates, plotted
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Figure 7. (a) Pole–residue plot from a Dlog Padé analysis of the series forM2(p)/p in the
bond-percolation (bond-counting) model. The dashed lines indicate the known values. One sees
that the line of data points does not pass exactly through the correct point when using an Euler
transformation withpn = −0.3. (b)–(d) Examination of non-analytic corrections forM2(p) in
the same model using the M1 technique. We show the plots for three different trial values ofpc
as indicated. Best convergence is achieved forpc = 0.4990 in (c). Hence this analysis could not
resolve the small deviation from the known critical parameters.
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Figure 7. (Continued)
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Figure 8. Pole–residue plot from a Padé analysis of the02-amplitude series in the bond-percolation
(bond-counting) model. No Euler transformation was applied. See the caption of figure 3 for further
explanation.

against the order of the Padé approximants. The results from averaging over the boxed area
are included in table 4. There we also give the results from the biased Padé analysis of the
series to(M2/p)

1/γ (pc − p).

Series forξ2(p). The original 14-termξ2(p)-series behaves excellently for its limited length,
judged from the Dlog Pad́e analysis, in the sense that the line of data points is well converged
and passes exactly through the known point(pc, 2ν) within the bounds set by scattering. We
followed the usual sequence of analysis as described above.

To obtain the amplitudeξ0 we use the transformed series for(ξ2/p)
1/(2ν)

. Estimates
for the amplitudeξ0 are hence calculated from the residues of simple real poles, asξ0 =
(residue2νpc)1/2. The series needs to be Euler transformed withpn around−0.3 to behave
well. Plots of the relevant estimates against the order of Padé approximants are shown in
figure 9(b). The results from this figure and from biased analysis forξ2(pc − p)2ν are again
summarized in table 4.

In the context of biased estimates, a way to directly analyse the series for the amplitude
ratioB2ξ2

0/02 is useful. By combining the original series we get an expansion for the quantity
[P 2ξ2/M2](x); herex denotes the expansion variable which wasp or q for the original
series. Scaling theory predicts that not only the leading singular terms cancel out, leaving the
amplitude combination as constant ‘background’, but also the analytic corrections cancel [23]
and the leading non-analytic correction term is smaller than in the original series [4]. We show
a plot of such analysis in figure 10. The obtained averageB2ξ2

0/02 = 2.215± 0.040 is more
precise than the value from individual amplitudes (table 7), and according to the above scaling
prediction less prone to systematic errors than biased estimates for the individual amplitudes.
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Figure 9. (a) Estimates for02 from the02-amplitude series in the bond-percolation (bond-
counting) model. No Euler transformation was applied. (b) Estimates forξ0 from theξ0-amplitude
series in the bond-percolation (bond-counting) model. We used an Euler transformation with
pn = −0.3. See the caption of figure 5 for further explanation.
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Figure 10. Direct estimates for the amplitude combinationB2ξ2
0/02 for the bond-percolation

(bond-counting) model from biased evaluation of Padé approximants to [P 2ξ2/M2](x). The
numbers resulting from averaging over the boxed area are summarized in table 4. See the caption
of figure 5 for further explanation.

4.2. Bond percolation with site counting

In the case of bond percolation with site counting the high concentration series ofP(q)available
to us is too short to be useful. Hence we analyse only the series forM2(p) andξ2(p), presented
in table 2, and use the value ofB from Monte Carlo simulations (see below in section 5) to
calculate the universal combination. For the analysis of the series we follow the same schedule
as in the bond-counting case, so we do not repeat the details here.

Both the series forM2(p) and forξ2(p)/p cause no problems in the Dlog Padé analysis
if Euler transformations are applied. Convergence of data points is good and their lines
pass precisely through the correct point of known exponent and threshold within the limit of
scattering. Figure 11 shows a plot forM2(p) as a typical example.

As amplitude series we use series transformed in the same (or very similar) way described
in section 4.2, followed by Padé analysis. The final results are obtained from plots of the
amplitude estimates (calculated from residues) as a function of the total order of the Padé
approximants, such as figures 12(a) and (b). We also give biased estimates for02 andξ0 in
table 5, together with all numerical results from this section.

4.3. Site percolation

Again we follow a very similar schedule of analysis for the three series forP(q),M2(p) and
ξ2(p) listed in table 3.

All the original series behave well, in the common sense, in Dlog Padé analysis,
occasionaly combined with Euler transformations. The same is true for the amplitude series.
We get good convergence in the pole–residue plots, and the highest concentration of data points
is indeed located around the knownpc.
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Figure 11. Pole–residue plot from a Dlog Padé analysis of the series ofM2(p) in the bond-
percolation (site-counting) model. We used an Euler transformation withpn = −0.3. The numbers
resulting from averaging over the displayed area are summarized in table 5.

The final values for the amplitudes are again obtained from plots of estimates as a function
of the total order of the Padé approximants (figure 13 forB and02), both from biased and
unbiased analysis.

Direct biased estimation of the amplitude combination leads toB2ξ2
0/02 = 2.231±0.086.

Note that here (for site percolation on the square lattice)pc 6= qc. Hence we first transform the
individual series to a new variablex, such thatxc = 1. This produces a factor of(qc/pc)5/18

in the estimates from the combined series.

5. Monte Carlo simulations

For the Monte Carlo simulations, we used a standard Hoshen–Kopelman algorithm [1] on
square bond lattices of size 6000× 6000 to 20 000× 20 000 with free boundary conditions.
Random integers of 64 bits were produced by multiplication with 16 807 and omission of
leading bits after overflow. Up to 2560 samples were simulated simultaneously on a Cray-
T3E, with each of the 256 processors looking at ten different lattices and requiring about
0.4µs per site. For the evaluation ofM2 also the largest cluster was taken into account since
we needed this moment only belowpc. All clusters were characterized by the number of sites
in them, not by the number of bonds.

The evaluation of the order parameter amplitudeB was difficult because of non-monotonic
size effects, also known from other phase transitions. For the 6000×6000 lattices, the product
P(p−pc)−β , which should approachB from equation (4), decreases with increasingp−pc for
10−6 < p− pc < 10−4, reaches a minimum at 0.0002, then increases to a maximum at about
0.01, and then slowly decreases. Figure 14 compares this effect with that at size 7000× 7000
and 20 000× 20 000; the larger the lattice is the closer we have to get to the critical point to
see the deviations. We thus concludedB ' 1.39 from figure 14 by extrapolation of the linear
p-dependence somewhat abovepc, and notB ' 1.30 from the data closest topc.
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Figure 12. (a) Estimates for02 from the02-amplitude series in the bond-percolation (site-counting)
model. We used an Euler transformation withpn = −0.3. (b) Estimates forξ0 from the ξ0-
amplitude series in the same model. See the caption of figure 5 for further explanation. The
numbers resulting from averaging over the boxed area are summarized in table 5.
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Figure 13. (a) Estimates forB from theB-amplitude series in the site-percolation model. No
Euler transformation was applied. (b) Estimates for02 from the02-amplitude series. No Euler
transformation was applied. See the caption of figure 5 for further explanation. The numbers
resulting from averaging over the boxed area are summarized in table 6.
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B ' 1.39 for ‘infinite’ lattices andp→ pc. (- - - -) is alinear fit to ‘×’ with p − pc > 0.01.

Table 7. The results for critical amplitudes and the universal combination thereof. Comparison of
the different models.

Model Ref. B = 01 02 ξ0 B2ξ2
0/02

Square lattice
Site percolation a 0.910± 0.009 0.102± 0.001 0.520± 0.005 2.195± 0.064

b 0.910 09± 0.000 44 0.097 22± 0.001 50 0.520 2± 0.0028 2.305± 0.043
c 0.910 56± 0.000 12 0.097 92± 0.000 51 0.514 4± 0.0041 2.240± 0.038
d 2.231± 0.086

Bond percolation e 1.39± 0.01 0.12± 0.01 2.20± 0.19g

(site counting) f 1.388 2± 0.000 4 0.119 48± 0.000 10 0.371 1± 0.0002 2.221± 0.003
b 0.119 46± 0.002 36 0.369 96± 0.000 96 2.208± 0.045g

c 0.119 63± 0.000 35 0.370 32± 0.000 60 2.209± 0.010g

Bond percolation b 0.777 71± 0.000 95 0.074 5± 0.003 4 0.522 3± 0.0054 2.215± 0.111
(bond counting) c 0.778 00± 0.000 60 0.074 84± 0.000 41 0.526 7± 0.0064 2.244± 0.056

d 2.215± 0.040

Triangular lattice
Site percolation a 0.780± 0.008 0.072 0± 0.0007 0.520± 0.005 2.285± 0.068

a From Monte Carlo simulation in [24].
b From plot of estimate versus order of Padé approximant, this work.
c From biased evaluation of Padé approximants, this work.
d From direct evaluation of Padé approximants to combined series, this work.
e From Monte Carlo simulation, this work.
f From Monte Carlo simulation by [28].
g Combining numbers from series and Monte Carlo.

6. Summary of results and discussion

In table 7 we present the values obtained for the various amplitudes and their combinations. It
contains results from the analysis of the new series presented in this paper as well as analysis
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of series obtained from [8]. From each series we obtained two estimates, unbiased and biased,
as detailed in section 4. They agree in all cases and usually the biased evaluation of Padé
approximants results in smaller error margins. However, systematic errors, which can be due
to corrections to the leading singular behaviour, may be larger than these margins, which were
calculated as standard deviations from averaging over a subset of all the different approximants.
The unbiased estimates of the amplitudes also yield estimates for the thresholds, which agree
with the accurately or exactly known values (tables 4–6). The error margin would have to be
increased slightly to include the known value only in two cases. Thus is seems reasonable
to set our confidence limits to the unbiased averages with two standard deviations as error
margins.

For bond percolation with bond counting and for site percolation, series for all three
quantitiesP(q),M2(p) and ξ(p) are available, allowing us to calculate the amplitude
combination directly from approximants to the combined series. In principle this should be the
most accurate and reliable way of analysis. In practice, the results of such calculations agree
with the former but do not have higher accuracy. This is not surprising, since the combined
series is limited to the length of the shortest individual one, and our series differed in length
considerably.

Conway and Guttmann [8] also obtained amplitude estimates from their series using
biased evaluation. With the same technique we reproduce their values (and error estimates,
see table 7), apart from minor deviations, which are likely due to different ranges of Padé
approximants included in the average. For the comparison we converted their numbers to our
definitions asBthis paper= Bp1−β

c and02 = C+p
γ+1
c .

The table further contains estimates from Monte Carlo studies. Those for site percolation
were reported in [24] (forξ0 see also [25]), those for bond percolation in the previous section.
Where both Monte Carlo and estimates from series analysis are available, they agree within
the stated errors (with one marginal exception). Note that the presumably most accurate value
for the amplitude combination is close to20

9 ≈ 2.222, a value which agrees with all the listed
estimates (except for one from biased evaluation, see the discussion above).

Overall, we have confirmed numerically that the amplitude combinationB2ξ2
0/02 is

indeed a universal quantity for two-dimensional percolation; all the measured values are
consistent with the value of 2.23±0.10. We have also emphasized the importance of choosing
the correct unit of length in order to test this result.

The literature contains additional results forB and 02 from series analysis [26, 27].
However, the values given by Sykeset al for site and bond percolation (bond counting) on
the square lattice do not agree with those from [8] and ours. Taking their values anyway,
one can combine them with our value ofB2ξ2

0/02 to deduce the valuesξ0 = 0.487± 0.022,
0.461± 0.021, 0.440± 0.022, and 0.461± 0.021 for site percolation on the triangular lattice,
bond percolation on the triangular lattice, site percolation on the honeycomb lattice, and bond
percolation on the honeycomb lattice, respectively. Note that02 andξ0 for site percolation on
the triangular lattice also do not agree with those from the Monte Carlo simulations in [24].
Thus, Sykeset al’s values may have a larger error than cited, probably due to the shorter series
used there.
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